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ABSTRACT 

The Surface Electromyographic (sEMG) signal is convenient for prosthetic 
device control due to its non-invasive acquisition and its intrinsic relation to the 
user's intention. This study presents an algorithm for estimation of the real time 
elbow joint angle from sEMG signals acquired from the muscles of biceps and 
triceps. The algorithm developed in the study uses time-domain feature extraction 
methods such as mean absolute value (MAV), root mean square (RMS) and 
waveform length (WL). Estimation of the joint angle using extracted sEMG features 
is performed by Artificial Neural Networks (ANN), specifically a Multilayer 
Perceptron (MLP) and a general regression neural network (GRNN). The overall 
system is implemented and tested in a real time hardware setup.  The results 
indicated that developed method could be successfully used for a prosthetic arm 
device posture control. 
Key Words: Surface Electromyographic (sEMG) Signals, Prosthetic Device 

Control, Time-Based Feature Extraction, Artificial Neural Networks. 
 

ÖZET 
Yüzeyel Elektromiyografik işaret, girişimsel olmayan şekilde edinilmesi ve 

kullanıcının isteğiyle doğrudan ilişkili olması sebebiyle protez cihaz kontrolü için 
uygundur. Bu çalışma, biceps ve triceps kaslarından edinilen Yüzeyel EMG 
işaretlerinden gerçek zamanlı dirsek eklem açısının tahmini için bir algoritma sunar. 
Çalışmada geliştirilen algoritma ortalama mutlak değer, ortalama karekök ve dalga 
boyu gibi zamana dayalı öznitelik çıkarma yöntemleri kullanır. Çıkartılan yüzeyel 
EMG öznitelikleri kullanılarak yapay sinir ağları özellikle Çok Katmanlı Algılayıcı ve 
Genel Regresyon sinir ağı tarafından eklem açısı tahmini gerçekleştirilir. Tüm 
sistem gerçek zamanlı donanım düzeneğinde uygulandı ve test edildi. Sonuçlar, 
geliştirilen yöntemin protez kol cihazının pozisyon kontrolü için başarılı bir şekilde 
kullanılabilirliğini göstermiştir. 
Anahtar Kelimeler :Yüzeyel Elektromiyografik İşaretler, Protez Cihaz Kontrolü, 

Zamana Dayalı Öznitelik Çıkarma, Yapay Sinir Ağları. 
 
 
 
 

                                                           
 Aynı başlıklı Yüksek Lisans tezinden üretilmiştir. 
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Introduction 
Surface EMG (sEMG) signals are taken from skin surface and they are 

used in various applications. Among them, clinical diagnosis, functional electrical 
stimulation (FES) and prosthetic device control could be stated. Patients with 
defects in their arm or hand cannot perform many functions in daily life. Prosthetic 
devices are designed to remedy this deficiency and to regain the arm or hand 
functionality. In applications, raw biological signals as a result of the activation of 
muscles are processed with developed techniques and methods in literature and 
they are used as control signals in the electronic controllers to move the 
mechanical parts of prosthetic limbs. 

However, prosthetic devices still have limitations and have needed 
improvements. Major subjects related to improvements are mainly categorized into 
three subgroups. The first one is mechanical solutions which will provide to operate 
arm at enough degrees of freedom. The second one is electronic circuits which will 
provide to move mechanical part desired speed and capability.  Last but not the 
least one is the improvements in the production of control signals for prosthetic 
uses. 

The control signals from sEMG are mainly obtained by performing feature 
extraction and classification techniques. The yielded information is used for 
postural and torque estimations for prosthetic device. In postural estimations, 
accurate real-time joint angle estimation have important role in device control since 
it is used as set point value. However, the real-time joint angle estimation still 
needs improvements in terms of accuracy and response time. 

 In this study, it is aimed to bring an improvement to above estimation 
issues.   To do that, a real time elbow joint angle estimation method by processing 
and classifying two different EMG signals which are taken from the biceps and 
triceps muscles is proposed. In the scope of study, it is aimed to collect EMG data 
which is measured from muscles of biceps and triceps correctly, to extract feature 
vector as real time, to choose correct classification algorithm and to compare with 
different classification algorithm, in an integrated structural form. 

Feature extraction and classification methods are implemented as a control 
signal for rehabilitation devices. In control of devices, joint angle estimations have 
an important role to control a rehabilitation device so many researchers did 
scientific studies about this subject.  

Pang et al. (2015) applied an upper limb elbow joint representation method 
that used only single channel EMG signals. EMG signals were recorded from the 
biceps muscle and a discretized recursive filter was implemented to calculate the 
muscle activation level from signals. A modified Hill type muscular model was 
implemented to build a quantitative relationship between the elbow joint angle and 
the muscle activation level (or EMG signals).  Experimental results indicated that 
this method could provide suitable prediction results with RMS errors of below 10° 
in continuous motion and RMS errors of below 10° in stepping motion with 20° and 
30° increments. 
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Raj et al. (2015) made to estimate the elbow joint angle from surface 
Electromyography (SEMG) signal during dynamic contraction using Fuzzy logic 
technique. SEMG signals were taken from the biceps brachii of subjects during 
flexion and extension of elbow. To estimate the elbow joint angle, the SEMG 
signals were segmented into 250ms by adjacent window technique and two time 
domain parameters such as Integrated EMG (IEMG) and Zero crossing (ZC) were 
extracted from windowed raw EMG signals. The estimated values of elbow joint 
angles were compared with the actual angle values. Two dimensional robotic arm 
animations were also coded using LabVIEW and incorporated to the output of 
fuzzy logic system to simulate the estimated angle. Regression value obtained 
from the experiment was 0.7975. 

Aung et al. (2012) improved a sEMG based back propagation neural 
network (BPNN) and a virtual human model (VHM). Four sEMG signals were 
collected from each of four healthy subjects and then sent to a BPNN controller to 
estimate the upper limb joint angle. The estimated angle was then displayed by the 
developed VHM. The evaluation results showed that the developed BPNN could 
represent the relationship between sEMG and joint angle successfully and the 
simulation of VHM mimicked the human arm movements. 

It is aimed a study which is related to real time elbow joint angle estimation. 
Firstly, two different EMG signals which are measured from the biceps and triceps 
muscles are processed using band pass filter and notch filter. Secondly, it is 
extracted features from these processed EMG data. It is used mean absolute value 
(MAV), root mean square (RMS) and waveform length (WL) which are from time 
domain feature extractions in this study as feature extraction and it is occurred 
feature vectors. Then, these feature vectors are classified using multilayer 
perceptron (MLP) and general regression neural network (GRNN). Finally, real time 
estimation of elbow joint angle which is result of neural networks compared with 
each other. 

 
Material and Method 

Previous literature surveys state that an sEMG classification system is 
mainly composed of three sub blocks (Rechy - Ramirez and Hu, 2011). These 
blocks are sEMG measurement and data acquisition unit, feature extraction unit 
and pattern classifier unit. A general overview of the system developed in this 
study for real-time joint angle estimation is given in Figure 1. In the system there is 
a goniometer which is used in training phase of classifiers and in final accuracy 
tests. The software for the overall system is implemented in MATLAB package at a 
desktop PC. 
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Figure 1. Block diagram for the estimation of elbow joint angle (Delis et al., 2009) 
 

The sEMG signal is a superposition of individual motor unit action 
potentials (MUAPs) within the pick-up range of the surface electrodes. Raw sEMG 
can range between +/- 5000 microvolts and typically the frequency contents ranges 
between 6 and 500 Hz, showing most frequency power between ~ 20 and 150 Hz 
(Konrad, 2006) 

The objective of the acquisition system and signal processing is to provide 
a high quality sEMG signals where the posture or muscle contraction specific 
information can be extracted and associated with the desired control command 
using classifiers, proportional or threshold algorithms, onset analysis, or finite state 
machines. The acquisition electronics of the sEMG interface consists of sEMG 
channels, filters, amplifiers, and an A/D converter. This section concentrates on the 
most essential issues in the design of an acquisition system: sEMG electrodes, 
cut-off frequencies of filters, sampling rate, and preprocessing algorithms. 
 
The Experimental Setup for Measurement and Data Acquisition 

In this studies, BIOPAC MP36 system for EMG signals acquisition and an 
electrogoniometer for measuring the arm joint angle. Two channels of the amplified 
EMG signal and the angle displacement signal from the electrogoniometer are 
analogically multiplexed and sampled 24 bit analog-to-digital (ADC) converter at a 
sampling rate of 2 KHz for each channel. 

Two pairs of 10 mm Ag/AgCl surface electrodes with conductive gel were 
placed in bipolar configuration over a pair of biceps and triceps muscles of the 
same arm, corresponding to the flexion and extension movements of the arm joint, 
respectively (Figures 2(a) and (b)). The distance between the centers of the 
electrodes of each pair was 3–5 cm. Each pair of electrodes was associated with a 
different EMG acquisition channel. Reference electrodes were placed over the 
lateral and medial epicondyle bones.  
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Figure 2. Placement of electrodes (a), (b) and electrogoniometer (c) 
 

An electrogoniometer was placed and strapped over the external side of 
the same arm, so that it would measure the angular displacement of the arm in 
sagittal plane (Figure 2(c)). The two channels of EMG data and the arm joint angle 
information were acquired using the BIOPAC MP36 data acquisition system. 

 
Data Collection and Formation 
 For data collection, one able-bodied volunteer was studied and provided 
informed consent in accordance with institutional policy. The collected data is put 
into formation, using speed and weight criteria, into categories given in Table 1. 
 
Table 1. Experiments and corresponding experimental configurations 

Experiments Speed of Arm Weight 

A1B1 Low 0 kg 

A1B2 Low 0.5 kg 

A1B3 Low 1 kg 

A2B1 Medium 0 kg 

A2B2 Medium 0.5 kg 

A2B3 Medium 1 kg 

A3B1 High 0 kg 

A3B2 High 0.5 kg 

A3B3 High 1 kg 
A1: Low Speed A2: Medium Speed A3: High Speed 
B1: No weight B2: 0.5 kg B3: 1 kg 

 
 Five 20 seconds measurements were performed on each experiment. For 
each measurement, the subject was asked to stand. Thus, a total of 45 
measurements were obtained. While the speed of arm was low, it was not got the 
volunteer any weights to hand in five measurements of experiments (A1B1). When 
the speed of arm was also low, it was got the volunteer 0.5 kg to hand in other five 
measurements. It was recorded by continuing in this way.  

A user interface is prepared to estimate real time elbow joint angle using 
Matlab GUI software. In interface, there are sections of channels check boxes, 
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button of Biopac Data Acquisition unit connection, start, stop, clear and save 
button. There are also list boxes for data acquisition adjustment such as sample 
rate, gain and time. 

Finally, there is a section which shows movement of an arm. In this 
section, an arm is moved according to estimated elbow joint angle. 

 

 
Figure 3.User interface for real time data acquisition 
 
Elbow Joint Angle Estimation System Algorithm and Neural Network 
Structure 

Figure 4 presents the main components of the proposed arm joint angle 
estimation system algorithm, which is based on myoelectric pattern recognition. 
The proposed algorithm is composed of two main stages: feature extraction, using 
time domain approaches such as mean absolute value (MAV), root mean square 
(RMS), waveform length (WL); and pattern classification, using the Multilayer 
Perceptron neural network. Feature extraction is performed independently for each 
EMG channel. Data from the electrogoniometer is used as reference during 
network training, and is not used by the network during testing. Each of these 
stages is discussed in detail below. All operations are performed by using the 
program developed in MATLAB software. 

 

 
Figure 4. Block diagram of arm joint angle estimation algorithm (Delis et al., 2009) 
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In this study, it is chosen time domain feature extraction because of their 
computational simplicity. Thus, their calculations are quicker and it does not have a 
more delay for real time estimation of elbow arm joint. 

The feature vector which occurs mean absolute value (MAV), waveform 
length (WL) and root mean square (RMS) representing the time-domain 
characteristics of the EMG signal is created in this study. MAV is an easy way for 
detection of muscle contraction levels and it is a popular feature used in 
myoelectric control application. WL is related to the amplitude, frequency, time of 
EMG signals. RMS is related to the constant force and non- fatiguing contraction. 
MAV is similar to RMS but RMS gives better results at high level contraction while 
MAV gives better for low contractions. 

The Neural Network stage is responsible for providing an estimate of the 
elbow joint angle from the set of six feature vectors obtained from the feature 
extraction stage. Pattern classification was performed using a Levenberg – 
Marquardt Multilayer Perceptron Neural Network (MLP) and General Regression 
Neural Network (GRNN). 

The MLP network which is used in this study has three layers in its 
structure, with twelve input nodes that are output vectors of feature extraction in 
the first layer, four nodes in the second layer which is associated with tangential 
functions and one node in the output layer which is associated with a linear 
function. This structure was chosen empirically, based on experiments aimed at 
minimizing the mean square error (MSE). The node in the output layer represents 
the estimated elbow joint angle (Figure 4). 

The proposed algorithm was implemented and evaluated in Matlab 
(Mathworks, Inc., South Natick, MA). Firstly, MAV, WL, RMS associated with each 
sample of each of the two EMG signals were calculated. Then, these feature 
vectors were used in MLP in order to generate the estimated elbow joint angle. 

During MLP network training, the outputs of feature extraction were used 
as inputs, and the corresponding angular displacement measurements from the 
electrogoniometer were used as the target outputs. 

General Regression Neural Network (GRNN) was also used to train EMG 
data. Generalized Regression neural networks are a kind of radial basis network 
that is often used for function approximation.  GRNNs can be designed very quickly 
so it is chosen as a neural network for these reasons. 

The collected and formatted data is used for Neural Network training, 
which is taken randomly from records of each experiment is combined as mixed 
and the experiments which are close each other in terms of speed and weight are 
not taken in a  sequential manner. For example data which is taken some part of 
Experiment A3B3 was added back of data which is taken some part of Experiment 
A1B1. Training data is obtained by continuing in this way. It is shown training data 
which consists of biceps and triceps EMG Signals and measured elbow joint angle 
in Figure 5.  
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Figure 5. A sample training data for neural network 
 

The test data is obtained in a similar manner as of training data. Data is 
taken randomly from records of each experiment and not belonging to training data 
is combined as mixed. The experiments which are close each other in terms of 
speed and weight are not taken in a sequential manner, neither. It is shown test 
data which consists of biceps and triceps EMG Signals and measured elbow joint 
angle in Figure 6.  

 

 
Figure 6. A sample of formed test data 
 

Results  
A part of real time data which was composed of measured EMG signal 

from biceps and triceps muscles was plotted at Figure 7. Time domain based 
features such as Mean Absolute Value (MAV), Root Mean Square (RMS) and 
Waveform Length (WL) were also plotted respectively. They were calculated from 
EMG data which was plotted in the same figure segmenting into 250 samples. 
These features were used as input values to test multilayer perceptron neural 
network (MLP) which was trained before and it was obtained estimated elbow joint 
angle in the end. 
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Figure 7.A part of real time data and feature graphs for MLP 

 
Feature vector which consisted from MAV, RMS and WL features 

calculated from real time data was as an input to test MLP neural network which 
was trained before and real time estimated elbow joint angle became as an output 
of MLP neural network.  It was seen graph of real time estimated joint angle at 
Figure 8. At the same time, measured elbow joint angle which was measured by 
goniometer was plotted in the same figure and real time estimated elbow joint 
angle was compared with measured elbow joint angle. 

 

 
Figure 8. Real time estimated and measured arm joint angle using MLP neural 

network 
 

The absolute error value was calculated subtracting measured elbow joint 
angle values from estimated elbow joint angle values which were obtained during 
real time test phase of MLP neural network and plotted at Figure 9. It is also worthy 
to state here the range for elbow joint angle is approximately 130 degrees. Hence, 
average percentage error around 10 %. 
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Figure 9. Absolute error of elbow joint angle estimation in MLP neural network 

using real time data 
 

 
Figure 10. A part of real time data and feature graphs for GRNN 

 
A part of real time data which was composed of measured EMG signal 

from biceps and triceps muscles was plotted at Figure 10. Time domain based 
features such as Mean Absolute Value (MAV), Root Mean Square (RMS) and 
Waveform Length (WL) were also plotted respectively. They were calculated from 
EMG data which was plotted in the same figure segmenting into 250 samples. 
These features were used as input values to test general regression neural 
network (GRNN) which was trained before and it was obtained estimated elbow 
joint angle in the end. 

 

 
Figure 11. Real time estimated and measured arm joint angle using general 

regression neural network 
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Feature vector which consisted from MAV, RMS and WL features 
calculated from real time data was as an input to test general regression neural 
network which was trained before and real time estimated elbow joint angle 
became as an output of general regression neural network.  It was seen graph of 
real time estimated joint angle at Figure 11. At the same time, measured elbow 
joint angle which was measured by goniometer was plotted in the same figure and 
real time estimated elbow joint angle was compared with measured elbow joint 
angle. 

 

 
Figure 12. Absolute error of elbow joint angle estimation in general regression 

neural network during real time phase 
 

The absolute error value was calculated subtracting measured elbow joint 
angle values from estimated elbow joint angle values which were obtained during 
training phase of General Regression Neural Network and plotted at Figure 12. It is 
also worthy to state here the range for elbow joint angle is approximately 135 
degrees. Hence, average percentage error around 11%. 
 
Table 2. Percentage accuracy of MLP and GRNN 

Accuracy MLP % GRNN % 

Real Time Data 89.63 88.35 

 
Table 2 shows that overall percentage accuracy values of estimated elbow 

joint angle which is obtained using training, test and real time EMG data in MLP 
and General Regression Neural Network. 

 
Discussion and Conclusion 

It is seen that MLP method provides less error values than GRNN 
algorithm for real time data. Accuracy of elbow joint angle estimation using MLP 
algorithm is higher than GRNN algorithm in real time data. Accuracy value of 
estimated elbow joint angle at MLP is 89.63% for real time data. 

At GRNN algorithm, performance of elbow joint angle estimation is low in 
real time data. Accuracy value of estimated elbow joint angle at GRNN is 88.35% 
for real time data respectively.   
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Mean square error (MSE) of MLP with three layers after 1000 epochs is 
0.025601 in this study. When this value is compared with studies of Ahsan et al., it 
is seen that the value of MSE in this study which has neural network structure with 
fewer layer neurons and fewer feature vectors is lower than their studies. It is also 
obtained higher performance than their studies. All results are acceptable in terms 
of accuracy and response speed as compared to previous studies in literature. 
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